Moving Average Forecasting. Introduction Som du kanskje antar vi ser på noen av de mest primitive tilnærmingene til prognoser, men forhåpentligvis er disse minst en verdig innføring i noen av databehandlingsproblemene knyttet til implementering av prognoser i regneark. I denne venen fortsetter vi med begynner i begynnelsen og begynner å jobbe med Moving Average Forecasts. Moving Average Forecasts Alle er kjent med å flytte gjennomsnittlige prognoser, uavhengig av om de tror de er Alle studenter gjør dem hele tiden Tenk på testpoengene dine i et kurs der du skal ha fire tester i løpet av semesteret. La oss anta at du fikk en 85 på din første test. Hva ville du forutsi for din andre test score. Hva tror du at din lærer ville forutsi for din neste test score. Hva tror du vennene dine kan forutsi for din neste test score. Hva tror du at foreldrene dine kan forutsi for din neste testscore. Uansett hvilken blabbing du kan gjøre til din fr Jeg og foreldrene mine, de og din lærer, er veldig sannsynlig å forvente deg å få noe i det 85 du nettopp har fått. Vel, la oss nå anta at til tross for selvforfremmelse til vennene dine, overestimerer du deg selv og finne ut at du kan studere mindre for den andre testen, og så får du en 73. Nå er det alle de bekymrede og ubekymrede kommer til å forutse at du kommer på den tredje testen. Det er to svært sannsynlige tilnærminger for dem å utvikle et estimat uavhengig av om de vil dele det med deg. De kan si til seg selv: Denne fyren blåser alltid røyk om hans smarts. Han kommer til å få en annen 73 hvis han er heldig. Måtte foreldrene forsøke å være mer støttende og si, vel, så langt du har fått en 85 og en 73, så kanskje du burde finne ut på å få en 85 73 2 79 Jeg vet ikke, kanskje hvis du gjorde mindre fester og ikke ville veksle vevet over alt, og hvis du begynte å gjøre en mye mer å studere du kan få en høyere score. Både disse estimatene er faktiske Den bevegelige gjennomsnittlige prognosen. Den første bruker bare din siste poengsum for å prognose din fremtidige ytelse. Dette kalles en gjennomsnittlig gjennomsnittlig prognose ved hjelp av en dataperiode. Den andre er også en flytende gjennomsnittlig prognose, men bruker to perioder med data. at alle disse menneskene bråser på ditt store sinn, har slags pisset deg av og du bestemmer deg for å gjøre det bra på den tredje testen av dine egne grunner og å sette en høyere poengsum foran dine allierte. Du tar testen og poengsummen din er egentlig en 89 Alle, inkludert deg selv, er imponert. Så nå har du den endelige testen av semesteret som kommer opp, og som vanlig føler du behovet for å få alle til å gjøre sine spådommer om hvordan du skal gjøre på den siste testen. Vel, forhåpentligvis ser du pattern. Now, forhåpentligvis kan du se mønsteret som tror du er den mest nøyaktige. Whistle Mens vi jobber nå, går vi tilbake til vårt nye rengjøringsfirma som startet av din fremmedgjorte halv søster, kalt Whistle While we Work Du har noen tidligere salgsdata representert av følgende seksjon fra et regneark Vi presenterer først dataene for en tre-års glidende gjennomsnittlig prognose. Oppføringen for celle C6 skal være. Nå kan du kopiere denne celleformelen ned til de andre cellene C7 til og med C11. Notat hvordan gjennomsnittet beveger seg over de nyeste historiske dataene, men bruker nøyaktig de tre siste perioder som er tilgjengelige for hver prediksjon. Du bør også legge merke til at vi ikke virkelig trenger å gjøre spådommene for de siste perioder for å utvikle vår siste prediksjon. Dette er definitivt forskjellig fra eksponensiell utjevningsmodell Jeg har inkludert de siste spådommene fordi vi vil bruke dem på neste nettside for å måle prediksjonens gyldighet. Nå vil jeg presentere de analoge resultatene for en to-års glidende gjennomsnittlig prognose. Oppføringen for celle C5 skal være. Nå kan kopiere denne celleformelen ned til de andre cellene C6 til C11. Notat hvor nå blir bare de to siste stykkene av historiske data brukt for hver prediksjon igjen, jeg har med d de siste spådommene for illustrative formål og for senere bruk i prognose validering. Som andre ting som er viktig å legge merke til. For en m-periode beveger gjennomsnittlig prognose bare de nyeste dataverdiene er brukt til å foreta prognosen Ingenting annet er nødvendig. For en m-periode som går i gjennomsnitt, vil prognosen ved første forsinkelse oppstå i perioden m 1.Bet av disse problemene vil være svært viktig når vi utvikler vår kode. Utvikle den bevegelige gjennomsnittsfunksjonen Nå må vi utvikle koden for den bevegelige gjennomsnittlige prognosen som kan brukes mer fleksibelt Koden følger Legg merke til at inngangene er for antall perioder du vil bruke i prognosen og rekke historiske verdier. Du kan lagre den i hvilken arbeidsbok du vil. Funksjon MovingAverage Historical, NumberOfPeriods Som Single Declaration og initialisering av variabler Dim Item Som variant Dim Counter Som Integer Dim Akkumulering Som Single Dim HistoricalSize Som Integer. Initialisering av variabler Teller 1 Akkumulering 0. Bestemme størrelsen på Historisk matrise HistoricalSize. For Counter 1 til NumberOfPeriods. Akkumulere riktig antall siste tidligere observerte verdier. Akkumulasjonsakkumulering Historisk Historisk størrelse - AntallOfPeriods Counter. MovingAverage AkkumuleringsnummerOfPeriods. Koden vil bli forklart i klassen. Du vil plassere funksjonen på regnearket slik at resultatet av beregningen vises der den skal som følgende. Simple Moving Average - SMA. BREAKING DOWN Enkel Moving Average - SMA. A enkelt glidende gjennomsnitt er tilpassbart ved at det kan beregnes for et annet antall tidsperioder, ganske enkelt ved å legge til sluttkurs for sikkerheten for et tall av tidsperioder og deretter dele denne summen med antall tidsperioder, noe som gir gjennomsnittsprisen på sikkerheten over tidsperioden. Et enkelt glidende gjennomsnitt svekker ut volatiliteten og gjør det lettere å se prisutviklingen for en sikkerhet. Hvis den enkle Flytte gjennomsnittlige poeng opp, betyr dette at sikkerhetsprisen øker. Hvis det peker ned, betyr det at sekuri ty s prisen er avtagende Jo lengre tidsramme for glidende gjennomsnitt, jo jevnere det enkle glidende gjennomsnittet Et kortere glidende gjennomsnitt er mer volatilt, men lesingen er nærmere kildedataene. Analytisk betydning. Gjennomsnittlig gjennomsnitt er et viktig analytisk verktøy brukes til å identifisere dagens prisutvikling og potensialet for endring i en etablert trend. Den enkleste formen for å bruke et enkelt bevegelige gjennomsnitts i analyse, bruker den til å raskt identifisere om en sikkerhet er i opptrend eller nedtrengning. En annen populær, om enn litt mer kompleks analytisk verktøyet, er å sammenligne et par enkle bevegelige gjennomsnitt med hver dekning av forskjellige tidsrammer. Hvis et kortere, rent, glidende gjennomsnitt er over et langsiktig gjennomsnitt, forventes en opptrend På den annen side er et langsiktig gjennomsnitt over en kortere periode - term gjennomsnitt signaler en nedadgående bevegelse i trend. Popular Trading Patterns. Two populære handelsmønstre som bruker enkle bevegelige gjennomsnitt inkluderer dødskorset og et gyldent kors A dea krysset oppstår når 50-dagers enkle glidende gjennomsnitt krysser under 200-dagers glidende gjennomsnitt. Dette betraktes som et bearish signal, at ytterligere tap er i butikken. Det gylne krysset oppstår når et kortsiktig glidende gjennombrudd går over en langsiktig bevegelse gjennomsnittlig Forsterket av høye handelsvolumer, kan dette signalere ytterligere gevinster i butikken. Gjennomgang av gjennomsnittlige og eksponensielle utjevningsmodeller. Som et første skritt i å bevege seg ut over gjennomsnittlige modeller, kan tilfeldige gangmodeller og lineære trendmodeller, nonseasonal mønstre og trender ekstrapoleres ved bruk av en glidende eller utjevningsmodell Den grunnleggende forutsetningen bak gjennomsnittlig og utjevning av modeller er at tidsserien er lokalt stasjonær med et sakte varierende gjennomsnitt. Derfor tar vi et lokalt lokalt gjennomsnitt for å estimere nåverdien av gjennomsnittet og deretter bruke det som prognose for nær fremtid Dette kan betraktes som et kompromiss mellom den vanlige modellen og den tilfeldige gang uten drift-modellen. Den samme strategien kan brukes til å estimere og ekstrapolere en lokal trend En glidende gjennomsnitt kalles ofte en glatt versjon av den opprinnelige serien, fordi kortsiktig gjennomsnittsverdi gir utjevning av støtene i den opprinnelige serien. Ved å justere graden av utjevning av bredde av glidende gjennomsnitt, kan vi håpe på finne en slags optimal balanse mellom ytelsen til de gjennomsnittlige og tilfeldige turmodellene. Den enkleste typen gjennomsnittsmodell er det enkle, likevektede flytende gjennomsnittet. Forventningen for verdien av Y på tidspunktet t 1 som er laget på tidspunktet t er likeverdig det enkle gjennomsnittet av de siste m-observasjonene. Her og andre steder vil jeg bruke symbolet Y-hatten til å utgjøre en prognose av tidsserien Y laget så tidlig som mulig før en bestemt modell. Dette gjennomsnittet er sentrert i perioden t-m 1 2, noe som innebærer at estimatet av det lokale gjennomsnittet vil ha en tendens til å ligge bak den sanne verdien av det lokale gjennomsnittet med ca. m 1 2 perioder. Således sier vi at gjennomsnittsalderen for dataene i det enkle glidende gjennomsnittet er m 1 2 i forhold til perioden for prognosen beregnes dette er hvor lang tid prognosene vil ha til å ligge bak vendepunkter i dataene. For eksempel, hvis du er gjennomsnittlig de siste 5 verdiene, vil prognosene være ca 3 perioder sent i å svare på vendepunkt. Merk at hvis m 1, Den enkle glidende SMA-modellen er ekvivalent med den tilfeldige turmodellen uten vekst Hvis m er veldig stor i forhold til lengden på estimeringsperioden, er SMA-modellen tilsvarlig for den gjennomsnittlige modellen. Som med hvilken som helst parameter i en prognosemodell, er det vanlig å justere verdien av ki n for å få den beste pasienten til dataene, dvs. de minste prognosefeilene i gjennomsnitt. Her er et eksempel på en serie som ser ut til å vise tilfeldige svingninger rundt et sakte varierende middel. Først må vi prøve å passe den med en tilfeldig spasertur modellen, som tilsvarer et enkelt bevegelige gjennomsnitt på 1 sikt. Den tilfeldige turmodellen reagerer veldig raskt på endringer i serien, men ved å gjøre det plukker mye av støyen i dataene de tilfeldige svingningene samt signalet den lokale mener Hvis vi i stedet prøver et enkelt glidende gjennomsnitt på 5 vilkår, får vi et smidigere sett med prognoser. Det 5-termens enkle glidende gjennomsnittet gir betydelig mindre feil enn den tilfeldige turmodellen i dette tilfellet Gjennomsnittsalderen for dataene i dette prognosen er 3 5 1 2, slik at den har en tendens til å ligge bak vendepunkter med om lag tre perioder. For eksempel synes det å ha oppstått en nedgang i perioden 21, men prognosene vender seg ikke til flere perioder senere. langsiktige prognoser fra SMA mod el er en horisontal rett linje, akkurat som i den tilfeldige turmodellen. Således antar SMA-modellen at det ikke er noen trend i dataene. Mens prognosene fra den tilfeldige turmodellen ganske enkelt er lik den siste observerte verdien, vil prognosene fra SMA-modellen er lik et vektet gjennomsnitt av de siste verdiene. Forsikringsgrensene beregnes av Statgraphics for de langsiktige prognosene for det enkle glidende gjennomsnittet, blir ikke større enn forventningshorisonten øker. Dette er åpenbart ikke riktig. Dessverre er det ingen underliggende statistisk teori som forteller oss hvordan konfidensintervallene skal utvides for denne modellen. Det er imidlertid ikke så vanskelig å beregne empiriske estimater av konfidensgrensene for lengre horisont-prognoser. For eksempel kan du sette opp et regneark der SMA-modellen vil bli brukt til å prognose 2 trinn foran, 3 trinn foran osv. i den historiske dataprøven. Du kan deretter beregne utvalgsstandardavvikene til feilene ved hver prognose h orizon, og deretter konstruere konfidensintervaller for langsiktige prognoser ved å legge til og trekke ut multipler av passende standardavvik. Hvis vi prøver et 9-glatt simpelt glidende gjennomsnitt, får vi enda jevnere prognoser og mer av en slående effekt. Gjennomsnittsalderen er nå 5 perioder 9 1 2 Hvis vi tar et 19-årig glidende gjennomsnitt, øker gjennomsnittsalderen til 10. Merk at prognosene nå ligger nede etter vendepunkter med ca 10 perioder. Hvor mye utjevning er best for denne serien Her er et bord som sammenligner deres feilstatistikk, også inkludert et 3-årig gjennomsnitt. Modell C, det 5-årige glidende gjennomsnittet, gir den laveste verdien av RMSE med en liten margin over 3 og 9-siktene, og deres andre statistikker er nesten identiske Så, blant modeller med svært like feilstatistikk, kan vi velge om vi foretrekker litt mer respons eller litt mer glatt i prognosene. Tilbake til toppen av siden. Bronse s Enkel eksponensiell utjevning eksponentielt vektet glidende gjennomsnitt. Den enkle bevegelige gjennomsnittsmodellen beskrevet ovenfor har den uønskede egenskapen som den behandler de siste k-observasjonene, like og fullstendig ignorerer alle foregående observasjoner. Intuitivt bør tidligere data diskonteres på en gradvis måte - for eksempel bør den nyeste observasjonen få litt mer vekt enn 2. siste, og den 2. siste skal få litt mer vekt enn den 3. siste, og så videre. Den enkle eksponensielle utjevning SES-modellen oppnår dette. La oss angi en utjevningskonstant et tall mellom 0 og 1 En måte å skrive modellen på er å definere en serie L som representerer det nåværende nivået, dvs. lokal middelverdi av serien som estimert fra data til nåtid. Verdien av L til tid t beregnes rekursivt fra sin egen tidligere verdi som dette. Den nåværende glatteverdien er således en interpolasjon mellom den forrige glattede verdien og den nåværende observasjonen, hvor kontrollen av nærheten til den interpolerte verdien til de mest re cent observasjon Prognosen for neste periode er bare den nåværende glatteverdien. Tilsvarende kan vi uttrykke neste prognose direkte i forhold til tidligere prognoser og tidligere observasjoner, i en hvilken som helst av følgende ekvivalente versjoner. I den første versjonen er prognosen en interpolering mellom forrige prognose og forrige observasjon. I den andre versjonen blir neste prognose oppnådd ved å justere forrige prognose i retning av den forrige feilen med en brøkdel. erroren som ble gjort på tidspunktet t I den tredje versjonen er prognosen en eksponentielt vektet dvs. nedsatt glidende gjennomsnitt med rabattfaktor 1.Interpoleringsversjonen av prognoseformelen er den enkleste å bruke hvis du implementerer modellen på et regneark det passer i en enkelt celle og inneholder cellehenvisninger som peker på forrige prognose, den forrige observasjon, og cellen der verdien av er lagret. Merk at hvis 1, SES-modellen er ekvivalent med en tilfeldig turmodell med trevekst Hvis 0 er SES-modellen ekvivalent med middelmodellen, forutsatt at den første glattede verdien er satt lik gjennomsnittet Tilbake til toppen av siden. Gjennomsnittsalderen for dataene i den enkle eksponensielle utjevningsprognosen er 1 relativ til den perioden som prognosen beregnes for. Dette er ikke ment å være åpenbart, men det kan enkelt vises ved å evaluere en uendelig serie. Derfor har den enkle glidende gjennomsnittlige prognosen en tendens til å ligge bak vendepunkter med ca. 1 perioder. For eksempel når 0 5 Laget er 2 perioder når 0 2 Laget er 5 perioder når 0 1 Laget er 10 perioder, og så videre. For en gitt gjennomsnittsalder, dvs. mengdeforsinkelse, er den enkle eksponensielle utjevning SES-prognosen noe bedre enn den enkle bevegelsen gjennomsnittlig SMA-prognose fordi den plasserer relativt mer vekt på den siste observasjonen - det er litt mer lydhør overfor endringer som skjedde i nyere tid. For eksempel har en SMA-modell med 9 vilkår og en SES-modell med 0 2 begge en gjennomsnittlig alder av 5 for da ta i sine prognoser, men SES-modellen legger mer vekt på de siste 3 verdiene enn SMA-modellen, og samtidig gliser den ikke helt over verdier som er mer enn 9 perioder gamle, som vist i dette diagrammet. En annen viktig fordel ved SES-modellen over SMA-modellen er at SES-modellen bruker en utjevningsparameter som er kontinuerlig variabel, slik at den enkelt kan optimaliseres ved å bruke en solveralgoritme for å minimere gjennomsnittlig kvadratfeil. Den optimale verdien av SES-modellen for denne serien viser seg å være 0 2961, som vist her. Gjennomsnittlig alder av dataene i denne prognosen er 1 0 2961 3 4 perioder, noe som ligner på et 6-rent simpelt gjennomsnitt. De langsiktige prognosene fra SES-modellen er en horisontal rettlinje som i SMA-modellen og den tilfeldige turmodellen uten vekst. Vær imidlertid oppmerksom på at konfidensintervallene som beregnes av Statgraphics, divergerer nå på en rimelig måte, og at de er vesentlig smalere enn konfidensintervaller for rand om gangmodellen SES-modellen antar at serien er noe mer forutsigbar enn den tilfeldige turmodellen. En SES-modell er egentlig et spesielt tilfelle av en ARIMA-modell, slik at den statistiske teorien om ARIMA-modeller gir et godt grunnlag for å beregne konfidensintervall for SES-modell Spesielt er en SES-modell en ARIMA-modell med en ikke-sesongforskjell, en MA 1-term, og ingen konstant term, ellers kjent som en ARIMA 0,1,1-modell uten konstant. MA 1-koeffisienten i ARIMA-modellen tilsvarer kvantum 1 i SES-modellen For eksempel, hvis du passer på en ARIMA 0,1,1 modell uten konstant til serien analysert her, viser den estimerte MA 1-koeffisienten seg å være 0 7029, som nesten er nesten en minus 0 2961. Det er mulig å legge til grunn for en ikke-null konstant lineær trend på en SES-modell. For å gjøre dette, bare angi en ARIMA-modell med en ikke-soneforskjell og en MA 1-term med en konstant, dvs. en ARIMA 0,1,1 modell med konstant De langsiktige prognosene vil da har en trend som er lik den gjennomsnittlige trenden observert over hele estimeringsperioden. Du kan ikke gjøre dette i forbindelse med sesongjustering, fordi sesongjusteringsalternativene er deaktivert når modelltypen er satt til ARIMA. Du kan imidlertid legge til en konstant lang langsiktig eksponensiell trend til en enkel eksponensiell utjevningsmodell med eller uten sesongjustering ved å benytte inflasjonsjusteringsalternativet i prospektprosedyren. Den aktuelle inflasjonsprosentveksten per periode kan estimeres som hellingskoeffisienten i en lineær trendmodell som er montert på dataene i sammen med en naturlig logaritme transformasjon, eller det kan være basert på annen uavhengig informasjon om langsiktige vekstutsikter. Tilbake til toppen av siden. Brett s Lineær, dvs. dobbel eksponensiell utjevning. SMA-modellene og SES-modellene antar at det ikke er noen trend av noe som helst i dataene som vanligvis er OK eller i det minste ikke for dårlig for 1-trinns prognoser når dataene er relativt nei sy, og de kan endres for å inkorporere en konstant lineær trend som vist over. Hva med kortsiktige trender Hvis en serie viser en varierende veksthastighet eller et syklisk mønster som skiller seg klart ut mot støyen, og hvis det er behov for å prognose mer enn 1 år framover, kan estimering av en lokal trend også være et problem. Den enkle eksponensielle utjevningsmodellen kan generaliseres for å oppnå en lineær eksponensiell utjevning av LES-modell som beregner lokale estimater av både nivå og trend. Den enkleste tidsvarierende trenden modellen er Brown s lineær eksponensiell utjevningsmodell, som bruker to forskjellige glatte serier som er sentrert på forskjellige tidspunkter. Forutsigelsesformelen er basert på en ekstrapolering av en linje gjennom de to sentrene. En mer sofistikert versjon av denne modellen, Holt s, er diskuteres nedenfor. Den algebraiske formen av Browns lineære eksponensielle utjevningsmodell, som for den enkle eksponensielle utjevningsmodellen, kan uttrykkes i en rekke forskjellige, men e kvivalente former Standardformen til denne modellen uttrykkes vanligvis som følger. La S betegne den enkeltglattede serien som er oppnådd ved å anvende enkel eksponensiell utjevning til serie Y Det er verdien av S ved period t gitt av. Husk at under enkel eksponensiell utjevning ville dette være prognosen for Y ved periode t 1 Så la S betegne den dobbeltslettede serien oppnådd ved å anvende enkel eksponensiell utjevning ved å bruke det samme til serie S. Til slutt er prognosen for Y tk for noen k 1, gis av. Dette gir e 1 0, dvs lurer litt, og la den første prognosen ligne den faktiske første observasjonen, og e 2 Y 2 Y 1 hvoretter prognosene genereres ved hjelp av ligningen over Dette gir de samme monterte verdiene som formelen basert på S og S hvis sistnevnte ble startet med S 1 S 1 Y 1 Denne versjonen av modellen brukes på neste side som illustrerer en kombinasjon av eksponensiell utjevning med sesongjustering. Helt s lineær eksponensiell utjevning. s LES-modellen beregner lokale estimater av nivå og trend ved å utjevne de siste dataene, men det faktum at det gjør det med en enkelt utjevningsparameter, stiller en begrensning på datamønstrene som det er i stand til å passe nivået og trenden, ikke tillates å variere ved uavhengige priser Holt s LES-modellen løser dette problemet ved å inkludere to utjevningskonstanter, en for nivået og en for trenden. På et hvilket som helst tidspunkt t, som i Browns modell, er det et estimat L t på lokalt nivå og et estimat T t av den lokale trenden Her beregnes de rekursivt fra verdien av Y observert ved tid t og de forrige estimatene av nivået og trenden ved to likninger som gjelder eksponensiell utjevning til dem separat. Hvis estimert nivå og trend ved tid t-1 er henholdsvis L t 1 og T t 1, vil prognosen for Y t som ville vært blitt gjort på tidspunktet t-1 være lik L t-1 T t 1 Når den virkelige verdien observeres, vil det oppdaterte estimatet av nivå beregnes rekursivt ved å interpolere mellom Y t og dets prognose, L t-1 T t-1, med vekt på og 1. Forandringen i estimert nivå, nemlig L t L t 1, kan tolkes som en støyende måling av trend på tiden t Det oppdaterte estimatet av trenden beregnes deretter rekursivt ved å interpolere mellom L t L t 1 og det forrige estimatet av trenden, T t-1 ved bruk av vekt og 1.Tolkningen av trend-utjevningskonstanten er analog med den for nivåutjevningskonstanten. Modeller med små verdier antar at trenden endrer seg bare veldig sakte over tid, mens modeller med større antar at det endrer seg raskere. En modell med en stor mener at den fjerne fremtiden er veldig usikker, fordi feil i trendestimering blir ganske viktig når prognose mer enn en periode fremover. Tilbake til toppen av side. Utjevningskonstantene og kan estimeres på vanlig måte ved å minimere den gjennomsnittlige kvadriske feilen i 1-trinns prognosene. Når dette gjøres i Statgraphics, viser estimatene seg å være 0 3048 og 0 008. Den svært små verdien av betyr at modellen antar svært liten endring i trenden fra en periode til den neste. Så i utgangspunktet prøver denne modellen å estimere en langsiktig trend. I analogi med begrepet gjennomsnittlig alder av dataene som brukes til estimering av t Han lokale nivå av serien, er gjennomsnittsalderen for dataene som brukes til å estimere den lokale trenden, proporsjonal med 1, men ikke akkurat lik den. I dette tilfellet viser det sig å være 1 0 006 125 Dette er ikke veldig presis tall forutsatt at nøyaktigheten av estimatet ikke er virkelig 3 desimaler, men det er av samme generelle størrelsesorden som prøvestørrelsen på 100, så denne modellen er gjennomsnittlig over ganske mye historie i estimering av trenden. Prognosen nedenfor viser at LES-modellen anslår en litt større lokal trend på slutten av serien enn den konstante trenden som er estimert i SES-trendmodellen. Den estimerte verdien er nesten identisk med den som oppnås ved å montere SES-modellen med eller uten trend , så dette er nesten den samme modellen. Nå ser disse ut som rimelige prognoser for en modell som skal estimere en lokal trend. Hvis du eyeball denne plottet, ser det ut som om den lokale trenden har vendt nedover på slutten av serie Wh ved har skjedd Parametrene til denne modellen har blitt estimert ved å minimere den kvadratiske feilen i 1-trinns prognoser, ikke langsiktige prognoser, i hvilket tilfelle trenden ikke gjør stor forskjell. Hvis alt du ser på er 1 Forsinkede feil ser du ikke det større bildet av trender over si 10 eller 20 perioder. For å få denne modellen mer i tråd med vår øyeeball-ekstrapolering av dataene, kan vi manuelt justere trend-utjevningskonstanten slik at den bruker en kortere basislinje for trendestimering. For eksempel, hvis vi velger å angi 0 1, er gjennomsnittsalderen for dataene som brukes til å estimere den lokale trenden 10 perioder, noe som betyr at vi gjennomsnittsverdi trenden over de siste 20 perioder eller så Her ser prognoseplottet ut om vi stiller 0 1 mens du holder 0 3 Dette ser intuitivt rimelig ut på denne serien, selv om det er sannsynligvis farlig å ekstrapolere denne trenden mer enn 10 perioder i fremtiden. Hva med feilstatistikken her er en modell sammenligning f eller de to modellene som er vist ovenfor, samt tre SES-modeller. Den optimale verdien av SES-modellen er ca. 0 3, men tilsvarende resultater med litt mer eller mindre respons er henholdsvis oppnådd med 0 5 og 0 2. En Holt s lineær utglatting med alfa 0 3048 og beta 0 008. B Holt s lineær utjevning med alfa 0 3 og beta 0 1. C Enkel eksponensiell utjevning med alfa 0 5. D Enkel eksponensiell utjevning med alfa 0 3. E Enkel eksponensiell utjevning med alfa 0 2.De statistikkene er nesten identiske, slik at vi virkelig ikke kan velge på grunnlag av 1-trinns prognosefeil i dataprøven. Vi må falle tilbake på andre hensyn. Hvis vi sterkt tror at det er fornuftig å basere dagens trendoverslag over hva som har skjedd i løpet av de siste 20 perioder, kan vi gjøre et tilfelle for LES-modellen med 0 3 og 0 1 Hvis vi vil være agnostiker om det er en lokal trend, kan en av SES-modellene være enklere å forklare og vil også gi mer middl e-of-the-road prognoser for de neste 5 eller 10 periodene. Tilbake til toppen av siden. Hvilken type trend-ekstrapolering er best horisontal eller lineær? Empiriske bevis tyder på at hvis dataene allerede er justert om nødvendig for inflasjon, så Det kan være uhensiktsmessig å ekstrapolere kortsiktige lineære trender svært langt inn i fremtiden. Trender som tydeligvis i dag kan løsne seg i fremtiden på grunn av ulike årsaker som forverring av produkt, økt konkurranse og konjunkturnedganger eller oppgang i en bransje. Derfor er enkel eksponensiell utjevning utføres ofte bedre ut av prøven enn det ellers kunne forventes, til tross for den naive horisontale trendenes ekstrapolering. Dampede trendmodifikasjoner av den lineære eksponensielle utjevningsmodellen brukes også i praksis til å introdusere en konservatismeddel i dens trendfremskrivninger. Den dempede trenden LES-modellen kan implementeres som et spesielt tilfelle av en ARIMA-modell, spesielt en ARIMA 1,1,2-modell. Det er mulig å beregne konfidensintervall arou nd langsiktige prognoser produsert av eksponentielle utjevningsmodeller, ved å betrakte dem som spesielle tilfeller av ARIMA-modeller Pass på at ikke alle programmer beregner konfidensintervaller for disse modellene riktig. Bredden på konfidensintervaller avhenger av RMS-feilen til modellen, ii typen av utjevning enkel eller lineær iii verdien av utjevningskonstanten s og iv antall perioder fremover du progniserer Generelt sprer intervallene raskere som blir større i SES-modellen, og de sprer seg mye raskere når de er lineære i stedet for enkle utjevning er brukt Dette emnet blir diskutert videre i ARIMA-modellene i notatene. Gå tilbake til toppen av siden.
No comments:
Post a Comment